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Abstract

A free vibration analysis of metal and ceramic functionally graded plates that uses the element-free kp-Ritz method is

presented. The material properties of the plates are assumed to vary continuously through their thickness according to a

power-law distribution of the volume fractions of the plate constituents. The first-order shear deformation plate theory is

employed to account for the transverse shear strain and rotary inertia, and mesh-free kernel particle functions are used to

approximate the two-dimensional displacement fields. The eigen-equation is obtained by applying the Ritz procedure to

the energy functional of the system. Convergence studies are performed to examine the stability of the proposed method,

and comparisons of the solutions derived with those reported in the literature are provided to verify its accuracy. Four

types of functionally graded rectangular and skew plates—Al/Al2O3, Al/ZrO2, Ti–6Al–4V/Aluminum oxide, and SUS304/

Si3N4—are included in the study, and the effects of the volume fraction, boundary conditions, and length-to-thickness

ratio on their frequency characteristics are discussed in detail.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded materials (FGMs) are special composites with material properties that vary
continuously through their thickness. FGMs are usually made of a mixture of ceramic and metal, and can
thus resist high-temperature conditions while maintaining toughness. The primary applications of FGMs are
in high-temperature environments, but the scope of their application is expanding.

Since the concept of FGMs [1] was first proposed, FGMs have been extensively studied by researchers, who
have mainly focused on their thermo-elastic behavior. Noda [2] provided a comprehensive discussion of
thermal stress in FGMs subjected to a steady-temperature field or thermal shock, and Praveen and Reddy [3]
investigated the static and dynamic thermo-elastic response of functionally graded plates (FGPs) using the
finite element method. Liew et al. [4,5] studied the thermal post-buckling of FGPs with temperature-dependent
properties and the post-buckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading.
Reddy [6] presented a theoretical formulation and finite element models for FGPs based on the third-order
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.06.025

ing author.

ess: kmliew@cityu.edu.hk (K.M. Liew).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.06.025
mailto:kmliew@cityu.edu.hk


ARTICLE IN PRESS
X. Zhao et al. / Journal of Sound and Vibration 319 (2009) 918–939 919
shear deformation theory. The formulations accounted for the thermomechanical coupling, time dependency,
and von Kármán-type geometric nonlinearity of the plates. Other work on FGMs has investigated three-
dimensional solutions for smart FGPs [7], the optimal shape control of FGPS [8,9], the modelling and design
of smart structures using FGMs and piezoelectric sensor/actuator patches [10], and the thermal stress behavior
of functional graded hollow circular cylinders [11].

Researchers have also turned their attention to the vibration and dynamic response of functionally graded
structures [12–14]. Sheng and Wang [15] investigated the effect of thermal load on vibration, buckling and
dynamic stability of functionally graded cylindrical shells embedded in an elastic medium. He et al. [16]
presented a finite element formulation for the shape and vibration control of FGPs with integrated
piezoelectric sensors and actuators, and investigated the effects of the volume fractions of the constituents on
the dynamic response of Aluminum oxide/Ti–6Al–4V FGM plates. Using a semi-analytical approach, Yang
and Shen [17] studied the free vibration and dynamic response of FGPs subjected to impulsive lateral loads
combined with initial in-plane actions in a thermal environment. A three-dimensional solution for the free and
forced vibration of simply supported FGPs was provided by Vel and Batra [18] using different plate theories,
and Liew et al. [19] carried out the Finite element piezothermoelasticity analysis and the active control of
FGM plates with integrated piezoelectric sensors and actuators. The frequency characteristics of thick annular
FGPs of variable thickness were analyzed by Efraim and Eisenberger [20], who utilized the first-order shear
deformation theory and exact element method to derive the stiffness matrix. Recently, Matsunaga [21] carried
out an analysis of the free vibration and stability of FGPs using the two-dimensional higher-order
deformation theory.

Mesh-free methods developed in recent years have been widely applied in a variety of engineering problems.
The element-free Galerkin method was used for the analysis of thin plates and shells [22,23], the pseudoelastic
behavior analysis of a SMA beam [24], the buckling analysis of corrugated plates [25], free vibration analysis
of fold plates [26]. The other notable mesh-free methods include the reproducing kernel particle method
[27–29] and the meshless local Petrov–Galerkin method [30].

This study presents a method for analyzing the free vibration of FGPs with arbitrary boundary conditions
using the element-free kp-Ritz method, which has already been successfully applied to the analysis of isotropic
and composite structures [31–34]. The first-order shear deformation plate theory is used to take account into
the transverse shear deformation. The elastic properties of the FGPs are determined by the volume fractions of
their constituents, which vary continuously through their thickness according to a power law. The bending
stiffness and the shear stiffness are separately computed; the bending stiffness is estimated by using the full
Gauss integration, whereas the shear stiffness is evaluated by using the one-point gauss point integration in
order to avoid the shear locking. Convergence studies and comparisons are provided to verify the stability and
accuracy of the method in analyzing four types of FGPs: Al/Al2O3, Al/ZrO2, Ti–6Al–4V/Aluminum oxide,
and SUS304/Si3N4. The influences of the boundary conditions, volume fraction exponent, and length-to-
thickness ratio on the frequency characteristics of FGPs are also examined in detail.

2. Functionally graded material properties

A functionally graded plate (shown in Fig. 1) is considered to be a single-layered plate of uniform thickness
that is made of ceramic and metal. The material property is assumed to be graded through the thickness in
accordance with a power-law distribution that is expressed as

PðzÞ ¼ ðPc � PmÞVc þ Pm, (1a)

Vc ¼
1

2
þ

z

h

� �n

ðnX0Þ, (1b)

where P represents the effective material property, Pc and Pm denote the properties of the ceramic and metal,
respectively, Vc is the volume fraction of the ceramic, h is the thickness of the plate, and n is the volume
fraction exponent. Fig. 2 shows the variation of the volume fraction through the thickness for different
exponents n. The effective material properties of the plate, including Young’s modulus E, density r, Poisson
ratio n, and thermal expansion b, vary according to Eq. (1). The properties of the temperature-dependent
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Fig. 1. Functionally graded plate.
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Fig. 2. Variation of the volume fraction Vc through the thickness.
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constituents of FGPs, such as Ti–6Al–4V, silicon nitride (Si3N4) and stainless steel (SUS304), can be expressed
as a nonlinear function of temperature [35] as

P ¼ P0ðP�1T
�1 þ 1þ P1T þ P2T2 þ P3T

3Þ, (2)

where P0, P�1, P1, P2, and P3 are the coefficients of temperature T. The values of the coefficients for
Ti–6Al–4V and Aluminum oxide are given in Table 1 as an example [36].

3. Theoretical formulations

3.1. Energy functional

According to the first-order shear deformation plate theory [37], the displacement field can be expressed as

uðx; y; zÞ ¼ u0ðx; yÞ þ zyxðx; yÞ,

vðx; y; zÞ ¼ v0ðx; yÞ þ zyyðx; yÞ,

wðx; y; zÞ ¼ w0ðx; yÞ, (3)
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Table 1

Material constants of Ti–6Al–4V and Aluminum oxide

Material constant Aluminum oxide Ti–6Al–4V

E (N/m2) n r (kg/m3) E (N/m2) n r (kg/m3)

P0 349.55� 109 0.26 3750 122.56� 109 0.2884 4429

P�1 0 0 0 0 0 0

P1 �3.853� 10�4 0 0 �4.586� 10�4 1.12� 10�4 0

P2 4.027� 10�7 0 0 0 0 0

P3 �1.673� 10�10 0 0 0 0 0

P 3.2024� 1011 0.26 3750 1.057� 1011 0.2981 4429
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where u0, v0, and w0 denote the displacements of the mid-plane of the plate in the x, y, and z directions, and yx

and yy represent the rotations of the transverse normal about the y- and x-axis, respectively.
The linear strains are given by

�xx

�yy

gxy

8>><
>>:

9>>=
>>; ¼

qu0
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qv0

qy

qu0
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qv0
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>>>>>>>>;
þ z
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( )
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>>>;
¼ fc0g. (4)

The strain energy of the plate is expressed by

U � ¼
1

2

Z
O

eTS edO, (5)

where e and S are given by

e ¼

e0
j

c0

8><
>:

9>=
>;, (6)

S ¼

A11 A12 A16 B11 B12 B16 0 0

A12 A22 A26 B12 B22 B26 0 0

A16 A26 A66 B16 B26 B66 0 0

B11 B12 B16 D11 D12 D16 0 0

B12 B22 B26 D12 D22 D26 0 0

B16 B26 B66 D16 D26 D66 0 0

0 0 0 0 0 0 As
44 As

45

0 0 0 0 0 0 As
45 As

55

2
666666666666664

3
777777777777775

¼

A B̄ 0

B̄ D 0

0 0 As

2
64

3
75, (7)

in which the extensional Aij, coupling Bij, bending Dij, and transverse shear As
ij stiffnesses are defined as

ðAij ;Bij ;DijÞ ¼

Z h=2

�h=2
Qijð1; z; z

2Þdz; As
ij ¼ K

Z h=2

�h=2
Qij dz, (8)
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where Aij, Bij, and Dij are defined for i, j ¼ 1,2,6 and As
ij is defined for i, j ¼ 4,5. K denotes the transverse shear

correction coefficient and is taken as K ¼ 5/6 for the isotropic material. The elastic coefficient Qij is given by

Q11 ¼
E

1� n2
; Q12 ¼ nQ11; Q22 ¼ Q11; Q44 ¼ Q55 ¼ Q66 ¼

E

2ð1� nÞ
. (9)

As Young’s modulus E and Poisson ratio n vary through the thickness according to Eq. (1), the elastic
coefficient Qij is a function of position z.

In the free vibration analysis of plates, the kinetic energy of the plates is given by

Y ¼
1

2

Z
O

Z h=2

�h=2
rðzÞð _u2 þ _v2 þ _w2ÞdzdO (10)

and the total energy functional is thus given by

P ¼ U � �Y. (11)

3.2. Two-dimensional kernel particle shape functions

Consider an approximation of function u(x) that is denoted by uh and expressed in discrete form as

uh ¼
XNP

I¼1

cI ðxÞuI , (12)

where NP is the number of nodes, and cI(x) and uI are the shape function and coefficient associated with
node I.

The construction of the shape functions is based on the kernel particle concept [27,28]. A two-dimensional
shape function is given by

cI ðxÞ ¼ CðxÞFaðx� xI Þ, (13)

where Fa(x�xI) is termed a kernel function with compact support and C(x) is termed a correction function,
which is used to satisfy the reproducing condition

XNP

I¼1

cI ðxÞx
p
I y

q
I ¼ xpyq for pþ q ¼ 0; 1; 2. (14)

The correction function C(x) is described as a linear combination of the complete second-order monomial
functions

CðxÞ ¼ HTðx� xI ÞbðxÞ, (15)

bðxÞ ¼ ½b0ðx; yÞ; b1ðx; yÞ; b2ðx; yÞ; b3ðx; yÞ; b4ðx; yÞ; b5ðx; yÞ�
T, (16)

HTðx� xI Þ ¼ ½1;x� xI ; y� yI ; ðx� xI Þðy� yI Þ; ðx� xI Þ
2; ðy� yI Þ

2
�, (17)

where H is a vector of the quadratic basis and b(x) is a vector that is determined later. The shape function can
therefore be written as

cI ðxÞ ¼ bTðxÞHðx� xI ÞFaðx� xI Þ. (18)

Eq. (18) can be rewritten as

cI ðxÞ ¼ bTðxÞBI ðx� xI Þ, (19)

where

BI ðx� xI Þ ¼ Hðx� xI ÞFaðx� xI Þ. (20)

The coefficients b(x) can be solved by substituting Eq. (19) into Eq. (14)

bðxÞ ¼M�1ðxÞHð0Þ, (21)
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where M is the moment matrix and H(0) is a constant vector. The expressions for M and H(0) are given by

MðxÞ ¼
XNP

I¼1

Hðx� xI ÞH
Tðx� xI ÞFaðx� xI Þ,

Hð0Þ ¼ ½1; 0; 0; 0; 0; 0�T. (22)

For a two-dimensional problem, the kernel function Fa(x�xI) is expressed as

Faðx� xI Þ ¼ FaðxÞFaðyÞ, (23)

in which

FaðxÞ ¼ f
x� xI

a

� �
, (24)

where f(x) is the weight function. The cubic spline function is chosen as the weight function, and is given by

fzðzI Þ ¼

2
3
� 4z2I þ 4z3I for 0pjzI jp 1

2

4
3
� 4zI þ 4z2I �

4
3

z3I for 1
2
ojzI jp1

0 otherwise

8>><
>>:

9>>=
>>;

zI ¼
ðx� xI Þ

dI

, (25)

where the dilatation parameter dI is the size of the support. The size of the domain of influence at a node is
calculated by

dI ¼ dmaxcI , (26)

where dmax is a scaling factor. The distance cI is determined by searching for a sufficient number of nodes that
avoids the singularity of the matrix M. The number of nodes should not be less than six for a quadratic basis,
as otherwise the matrix M will not be invertible.

The shape function can therefore be expressed as

cI ðxÞ ¼ HTð0ÞM�1ðxÞHðx� xI ÞFaðx� xI Þ. (27)

As the shape function cI(x) does not possess Kronecker delta properties, the boundary conditions cannot be
directly imposed. Several methods, such as the transformation method [27], Lagrange multipliers [38], and the
penalty method, have been proposed to impose the essential boundary conditions.

3.3. Discrete eigen-equation

For a plate discretized by a set of nodes xI, I ¼ 1, y, NP, which are the discrete displacement
approximations of the mid-plane, are expressed as

uh
0 ¼

uh
0

vh
0

wh
0

yh
x

yh
y

0
BBBBBBB@

1
CCCCCCCA
¼
XNP

I¼1

cI

uI

vI

wI

yxI

yyI

0
BBBBBB@

1
CCCCCCA

eiot ¼
XNP

I¼1

cI ðxÞuI e
iot. (28)

Substituting Eq. (28) into Eq. (11) and taking the variation in the energy functional yields the eigen-
equation

ð ~K� o2 ~MÞ~u ¼ 0, (29)

where

~K ¼ K�1KK�T; ~M ¼ K�1M̄; ~u ¼ Ku (30)



ARTICLE IN PRESS
X. Zhao et al. / Journal of Sound and Vibration 319 (2009) 918–939924
KIJ ¼ cI ðxJÞI; I is the identity matrix (31)

K ¼ Kb þ Km þ Ks, (32)

Kb
IJ ¼

Z
O
BbT

I DBb
J dO, (33)

Km
IJ ¼

Z
O
BmT

I ABm
J dOþ

Z
O
BmT

I BB¯
b
J dOþ

Z
O
BbT

I BB¯
m
J dO, (34)

Ks
IJ ¼

Z
O
BsT

I AsBs
J dO, (35)

M̄IJ ¼

Z
O
GT

I m̄GJ dO, (36)

Bb
I ¼

0 0 0
qcI

qx
0

0 0 0 0
qcI

qy

0 0 0
qcI

qy

qcI

qx

2
66666664

3
77777775
; Bm

I ¼

qcI

qx
0 0 0 0

0
qcI

qy
0 0 0

qcI

qy

qcI

qx
0 0 0

2
66666664

3
77777775
, (37)

Bs
I ¼

0 0
qcI

qx
cI 0

0 0
qcI

qy
0 cI

2
664

3
775; GI ¼

cI 0 0 0 0

0 cI 0 0 0

0 0 cI 0 0

0 0 0 cI 0

0 0 0 0 cI

2
6666664

3
7777775
, (38)

m̄ ¼

I0 0 0 I1 0

0 I0 0 0 I1

0 0 I0 0 0

I1 0 0 I2 0

0 I1 0 0 I2

2
6666664

3
7777775
ðI0; I1; I2Þ ¼

Z h=2

�h=2
rðzÞð1; z; z2Þdz, (39)

where the density r(z) is determined by Eq. (1). The matrices A, B̄, D, and m̄ can be computed using either an
analytical or a numerical method. If the constituents of the FGPs have different Poisson ratios, then analytical
forms of matrices A, B̄, D may not always exist, and it is for this reason that a recursive adaptive Simpson
quadrature is employed here to calculate the matrices. The matrices Kb, Km, Ks

, and M̄ are evaluated using the
Gauss integration method.

4. Numerical results

The properties of the temperature-dependent constituents of FGPs are calculated according to Eq. (2).
Table 1 shows the corresponding material constants of Aluminum oxide and Ti–6Al–4V, and Fig. 3 shows the
plots of the variation with temperature of Young’s modulus E for four types of material—Aluminum oxide,
Ti–6Al–4V, SUS304 and Si3N4—with the values of Young’s modulus for Ti–6Al–4V and SUS304 being
represented on the right vertical axis. A distinctive relationship between Young’s modulus and the temperature
can be observed for each material. The properties of the constituents of the FGPs are given at temperature
T ¼ 300K (room temperature) unless specified otherwise. The kernel particle function is employed to
construct approximations of the two-dimensional displacement field. A scaling factor that represents the size
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Fig. 3. Variation of Young’s modulus with temperature for different materials.

Table 2

Properties of the FGM components

Material Properties

E (N/m2) n r (kg/m3)

Aluminum (Al) 70.0� 109 0.30 2707

Alumina (Al2O3) 380� 109 0.30 3800

Zirconia(ZrO2) 151� 109 0.30 3000

Ti–6Al–4V 105.7� 109 0.298 4429

Aluminum oxide 320.2� 109 0.26 3750

Stainless steel SUS304 207.78� 109 0.3177 8166

Silicon nitride Si3N4 322.27� 109 0.24 2370
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of the support of 3.0 is used, and a background cell structure based on the nodes is generated to perform the
numerical integration. A 4� 4 Gauss integration is used to compute the bending stiffness Kb and coupling
stiffness Km, and the shear stiffness Ks is evaluated with a one-point Gauss integration. The transformation
method is employed to impose the essential boundary conditions.

4.1. Convergence study

To verify the results, the convergence properties of simply supported square FGPs are examined in terms of
the number of nodes required. The plates consist of Aluminum (Al) and Alumina (Al2O3), the properties of
which are given in Table 2. Plates with the length-to-thickness ratios a/h ¼ 5 and 10 are considered, and the
values of the volume fraction exponent are taken to be n ¼ 0, 0.5, 1, 4, 10. The fundamental natural frequency
parameter ō ¼ oh

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
, as provided in Table 3, is compared with the solutions reported by Matsunaga [21]

using a higher-order deformation theory. It is found that the results of this study show a trend of monotonic
convergence trend, and that the solutions are slightly larger than those given in the literature. The difference
ranges from 1.4% to 2% for the plates with a/h ¼ 10, and from 1.6% to 3.4% for the plates with a/h ¼ 5. The
maximum difference occurs when a/h ¼ 5 and n ¼ 0.5. These discrepancies may be due to the different plate
theories adopted and the solution strategies used in the two studies.
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Table 3

Comparison of the natural frequency parameter ō ¼ oh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for simply supported square Al/Al2O3 FG plates

a/h n

0 0.5 1 4 10

5

Present

9� 9 0.2018 0.1726 0.1559 0.1332 0.1261

11� 11 0.2035 0.1740 0.1572 0.1343 0.1271

13� 13 0.2045 0.1748 0.1579 0.1349 0.1277

15� 15 0.2051 0.1753 0.1584 0.1354 0.1281

17� 17 0.2055 0.1757 0.1587 0.1356 0.1284

Matsunaga [21] 0.2121 0.1819 0.1640 0.1383 0.1306

10

Present

9� 9 0.05606 0.04763 0.04296 0.03712 0.03547

11� 11 0.05632 0.04783 0.04315 0.03729 0.03564

13� 13 0.05649 0.04799 0.04328 0.03741 0.03576

15� 15 0.05663 0.04809 0.04338 0.03750 0.03585

17� 17 0.05673 0.04818 0.04346 0.03757 0.03591

Matsunaga [21] 0.05777 0.04917 0.04426 0.03811 0.03642

Table 4

Comparison of the natural frequency o (Hz) for simply supported square Ti–Al–4V/Aluminum oxide FG plates (a ¼ b ¼ 0.4, h ¼ 0.005)

Mode n ¼ 0 n ¼ 2000

Present Bishop [39] He et al. [16] Present Bishop [39] He et al. [16]

1 143.67 145.04 144.66 268.60 271.23 268.92

2 360.64 362.61 360.53 674.38 678.06 669.40

3 360.64 362.61 360.53 674.38 678.06 669.40

4 575.87 580.18 569.89 1076.8 1084.9 1052.49

5 725.53 725.22 720.57 1356.9 1356.1 1338.52

6 725.53 725.22 720.57 1356.9 1356.1 1338.52

7 938.18 942.79 919.74 1754.4 1763.0 1695.23

8 938.18 942.79 919.74 1754.4 1763.0 1695.23

9 1238.76 1233.0 1225.72 2316.9 2305.4 2280.95

10 1238.76 1233.0 1225.72 2316.9 2305.4 2280.95

X. Zhao et al. / Journal of Sound and Vibration 319 (2009) 918–939926
Table 4 shows a comparison of the natural frequencies of simply supported square FGPs derived using the
method proposed here with those given by Bishop [39] and He et al. [16]. The geometric properties of the
plates are a ¼ b ¼ 0.4m, h ¼ 0.005m. The FGPs consist of Ti–6Al–4V and Aluminum oxide, the properties of
which are listed in Table 2. Two special volume fraction components n ¼ 0 and 2000 are selected. It can be
seen that the solutions from this study agree well with those presented by Bishop [39], and also match the
results reported by He et al. [16], except for a few higher modes where slightly larger differences are observed.

4.2. Square plates

In this section, the frequency characteristics of four types of square plates—Al/Al2O3, Al/ZrO2, Ti–6Al–4V/
Aluminum oxide, and SUS304/Si3N4—are investigated. The properties of the constituents are provided in
Table 2. The volume fraction exponent n varies from 0 to 10, and the thickness of the plates is h ¼ 0.01m. The
two length-to-thickness ratios a/h ¼ 10 and 100 are selected, and three types of boundary conditions—all
edges simply supported (SSSS), one edge clamped and the other three free (CFFF), and all edges clamped
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(CCCC)—are considered. A regular 17� 17 nodal distribution is chosen for the convergence studies. The
simply supported boundary condition is expressed as

At x ¼ 0; a : v0 ¼ w0 ¼ yy ¼ 0

At y ¼ �b=2; b=2 : u0 ¼ w0 ¼ yx ¼ 0. (40)

The boundary conditions at the clamped edges are given by

u0 ¼ v0 ¼ w0 ¼ yx ¼ yy ¼ 0 (41)

and the frequency parameter o* is defined as

o� ¼ oa2=h
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
. (42)

Table 5 shows the variation of the non-dimensional frequency parameter with the volume fraction exponent
for the Al/Al2O3 plates (a/h ¼ 10). Only the results for the first four modes are computed. For the plates with
the SSSS boundary condition, the frequencies in all four modes decrease as the volume fraction exponent n

increases, with the trend becoming gentler as n increases. This is expected, because a larger volume fraction
exponent means that a plate has a smaller ceramic component, and that its stiffness is thus reduced. Similar
trends are also observed for the CFFF and CCCC boundary conditions.

The variation of the non-dimensional frequency parameter with the volume fraction exponent for plates
made of Al/ZrO2, Ti–6Al–4V/Aluminum oxide, and SUS304/Si3N4, is described in Tables 6–8, respectively.
The frequency characteristics shown in these three tables are similar to those in Table 5.

Table 9 shows the effect of the temperature on the frequency parameter o* for the square Ti–6Al–4V/
Aluminum oxide plates (a/h ¼ 10) with SSSS and CCCC boundary conditions. The temperature varies from
100 to 1000K. It can be seen that the natural frequency declines as the temperature goes up. It is because
Young’s modulus is getting weaker when the temperature goes up; hence the weaker Young’s modulus results
in the lower natural frequency.

Fig. 4 shows a comparison of the fundamental natural frequency parameters of four simply supported
plates. It can be seen that all of the curves that represent the various combinations show a similar behavior,
with the frequencies dropping as the volume fraction exponent increases. The curves for the plates made of a
combination of Al/Al2O3 and Ti–6Al–4V/Aluminum oxide nearly overlap, whereas the curve for the Al/ZrO2

plate has the highest values and the curve for the SUS304/Si3N4 the lowest. A prominent drop in frequency
occurs when the volume fraction exponent varies between 0 and 2, but after passing 5 all of the curves become
flatter. Similar conclusions can be drawn from Figs. 5 and 6 for plates with the CCCC and CFFF boundary
conditions.
Table 5

Variation of the frequency parameter o� ¼ oa2=h
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
with the volume fraction exponent n for square Al/Al2O3 FG plates (a/h ¼ 10)

Boundary condition Mode n

0 0.5 1 2 5 8 10

SSSS 1 5.6763 4.8209 4.3474 3.9474 3.7218 3.6410 3.5923

2 13.537 11.539 10.416 9.4435 8.8448 8.6264 8.5037

3 13.537 11.539 10.416 9.4435 8.8448 8.6264 8.5037

4 20.633 17.639 15.936 14.431 13.445 13.082 12.887

CFFF 1 1.0298 0.8728 0.7867 0.7150 0.6768 0.6633 0.6547

2 2.3907 2.0313 1.8324 1.6639 1.5678 1.5332 1.5125

3 6.0047 5.1061 4.6048 4.1769 3.9273 3.8382 3.7861

4 7.6356 5.8932 5.4609 4.9331 4.2625 3.9916 3.8852

CCCC 1 9.6329 8.2388 7.4533 6.7629 6.3060 6.1314 6.0375

2 18.313 15.742 14.265 12.924 11.946 11.567 11.377

3 18.313 15.742 14.265 12.924 11.946 11.567 11.377

4 25.499 21.979 19.935 18.042 16.597 16.037 15.763
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Table 6

Variation of the frequency parameter o� ¼ oa2=h
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
with the volume fraction exponent n for square Al/ZrO2 FG plates (a/h ¼ 10)

Boundary condition Mode n

0 0.5 1 2 5 8 10

SSSS 1 5.6763 5.1105 4.8713 4.6977 4.5549 4.4741 4.4323

2 13.537 12.207 11.633 11.199 10.828 10.632 10.533

3 13.537 12.207 11.633 11.199 10.828 10.632 10.533

4 20.633 18.630 17.748 17.063 16.462 16.157 16.008

CFFF 1 1.0299 0.9263 0.8832 0.8526 0.8280 0.8135 0.8058

2 2.3908 2.1528 2.0521 1.9787 1.9181 1.8839 1.8663

3 6.0046 5.4091 5.1549 4.9675 4.8115 4.7255 4.6816

4 7.6356 6.0506 5.7604 5.4439 5.0955 4.9709 4.9245

CCCC 1 9.6354 8.7011 8.2925 7.9756 7.6959 7.5521 7.4815

2 18.305 16.567 15.783 15.147 14.563 14.282 14.149

3 18.305 16.567 15.783 15.147 14.563 14.282 14.149

4 25.506 23.111 22.014 21.099 20.247 19.849 19.666

Table 7

Variation of the frequency parameter o� ¼ oa2=h
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
with the volume fraction exponent n for square Ti–6Al–4V/Aluminum oxide

FG plates (a/h ¼ 10)

Boundary condition Mode n

0 0.5 1 2 5 8 10

SSSS 1 5.6147 4.6754 4.2255 3.8897 3.6546 3.5435 3.4892

2 13.420 11.257 10.114 9.2916 8.7480 8.4729 8.3417

3 13.420 11.257 10.114 9.2916 8.7480 8.4729 8.3417

4 20.484 17.2867 15.459 14.179 13.372 12.939 12.738

CFFF 1 1.0237 0.8463 0.7680 0.7075 0.6627 0.6428 0.6330

2 2.4277 1.9981 1.8090 1.6615 1.5502 1.5019 1.4783

3 6.0517 4.9987 4.5310 4.1634 3.8839 3.7635 3.7051

4 6.6026 5.6426 5.1452 4.6267 4.0756 3.8816 3.8094

CCCC 1 9.7129 8.0712 7.3301 6.7304 6.2483 6.0444 5.9490

2 18.666 15.543 14.115 12.929 11.939 11.531 11.347

3 18.666 15.543 14.115 12.929 11.939 11.531 11.347

4 26.152 21.801 19.795 18.106 16.669 16.087 15.827
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Fig. 7 depicts the effects of the volume fraction exponent and length-to-thickness ratio on the fundamental
natural frequency parameter of simply supported Al/ZrO2 plates. It shows that, for plates with a certain
volume fraction, the frequency rises as the length-to-thickness ratio increases up to around 20, but when it
escalates further no evident frequency changes can be discerned. The same observations can be made from
Fig. 8, which shows the impact of the volume fraction exponent and length-to-thickness ratio on the
fundamental natural frequency parameters of fully clamped SUS304/Si3N4 plates. It is therefore concluded
that the effects of the length-to-thickness ratio on the frequency of plates is independent of the variation in the
volume fraction.

4.3. Skew plates

A skew plate with a skew angle a is shown in Fig. 9. Note that on the oblique edges of the skew plate, a
transformation between the global and local displacements is needed to enforce of boundary condition. For a



ARTICLE IN PRESS

Table 8

Variation of the frequency parameter o� ¼ oa2=h
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
with the volume fraction exponent n for square SUS304/Si3N4 FG plates

(a/h ¼ 10)

Boundary condition Mode n

0 0.5 1 2 5 8 10

SSSS 1 5.6148 3.8947 3.4242 3.0813 2.8058 2.7129 2.6768

2 13.513 9.3645 8.2298 7.3991 6.7284 6.5032 6.4161

3 13.513 9.3645 8.2298 7.3991 6.7284 6.5032 6.4161

4 20.740 14.365 12.620 11.338 10.299 9.9517 9.8178

CFFF 1 1.0203 0.7059 0.6199 0.5576 0.5077 0.4907 0.4841

2 2.4399 1.6681 1.4583 1.3065 1.1850 1.1434 1.1269

3 6.0523 4.1666 3.6526 3.2790 2.9788 2.8766 2.8366

4 6.6208 4.5977 4.0059 3.5409 3.1579 3.0436 3.0035

CCCC 1 9.6814 6.7091 5.8902 5.2874 4.8005 4.6389 4.5767

2 18.627 12.896 11.314 10.142 9.1896 8.8760 8.7565

3 18.627 12.896 11.314 10.142 9.1896 8.8760 8.7565

4 26.114 18.069 15.846 14.192 12.846 12.404 12.236

Table 9

Effects of temperature on the frequency parameter o� ¼ oa2=h
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for the square Ti–6Al–4V/Aluminum oxide FG plates (a/h ¼ 10)

Boundary condition n Mode T

100 400 700 1000

SSSS 0.5 1 4.6874 4.6492 4.5839 4.5066

2 2 11.301 11.209 11.053 10.869

1 3.9482 3.8647 3.7176 3.5312

2 9.5006 9.2992 8.9473 8.5029

CCCC 0.5 1 8.1063 8.0407 7.9303 7.8001

2 2 15.624 15.499 15.289 15.0434

1 6.8101 6.6672 6.4189 6.1069

2 13.094 12.819 12.348 11.759
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certain point on the oblique edge, the displacement transformation is given by

u

v

w

yx

yy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

sin a � cos a 0 0 0

cos a sin a 0 0 0

0 0 1 0 0

0 0 0 sin a � cos a

0 0 0 cos a sin a

2
6666664

3
7777775

u0

v0

w0

y0x
y0y

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
, (43)

where u0, v0, w0, y0x, and y0y are the displacements in the local coordinate system. For the nodes that are not
located on the oblique edges, the transformation matrix is a unit matrix.

In this section, isotropic skew plates are considered first. A regular nodal distribution of 17� 17 is used for
the skew plate analysis, and the following geometry properties are adopted for the plates: a/b ¼ 1, a/h ¼ 1000
and a/b ¼ 5, skew angle a ¼ 151 and 451. The Poisson ratio is taken as 0.3, and the frequency parameter ô is
defined as

ô ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh= �D

q
; �D ¼ Eh3=12ð1� v2Þ. (44)
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Table 10 shows the frequencies of the first six modes for a simply supported skew plate (a ¼ 151). For
comparison, the solutions reported in the literature [40–43] are also provided. It can be seen that, for both a
thin plate (a/h ¼ 1000) and a relatively thick plate (a/h ¼ 5), the results show very good agreement with the
highly accurate solutions given by Liew et al. [41] and Huang et al. [40], and also compare well with the results
produced by Woo et al. [42] and Raju and Hinton [43]. The frequencies for a fully clamped skew plate with
a ¼ 151 and a simply supported and a clamped skew plate with a ¼ 451 are listed in Tables 11–13, respectively,
and the same observations as those obtained from Table 10 can be made.

Tables 14 and 15 show the frequencies of the first four modes for simply supported and clamped
functionally graded Al/ZrO2 skew plates (a/h ¼ 10, a/b ¼ 1), respectively. The volume fraction exponent n

varies between 0 and 3, and the skew angle ranges from 151 to 601. It is observed that, for plates with a fixed
volume fraction exponent, the frequencies in all four modes increase with the rising skew angle, whereas for
plates with a predetermined skew angle, the frequencies gradually drop as the volume fraction exponent
increases.
Table 10

Comparison of the frequency parameter ô ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh= �D

q
) for simply supported skew plates (a/b ¼ 1, v ¼ 0.3, a ¼ 151)

h/b Mode ô

Present Liew et al. [41] Huang et al. [40] Raju and Hinton [43] Woo et al. [42]

0.001 1 2.1144 2.1147 2.1144 2.117 2.1149

2 4.8632 4.8842 4.8842 4.903 4.8841

3 5.6859 5.6856 5.6848 5.712 5.6872

4 7.9776 8.0090 8.0087 8.069 8.0090

5 10.5398 10.5372 10.5374 10.76 10.5377

6 11.0665 11.0337 – – 11.0277

0.2 1 1.8388 1.8560 – 1.860 1.8025

2 3.7768 3.7856 – 3.803 3.7228

3 4.2559 4.2763 – 4.300 4.2158

4 5.5618 5.5784 – 5.617 5.4398

5 6.8562 6.8385 – 6.947 6.7836

6 7.0715 7.0702 – – 7.0125

Table 11

Comparison of the frequency parameter ô ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh= �D

q
for clamped skew plates (a/b ¼ 1, v ¼ 0.3, a ¼ 151)

h/b Mode ô

Present Liew et al. [41] Huang et al. [40] Raju and Hinton [43] Woo et al. [42]

0.001 1 3.8429 3.8691 3.8692 3.872 3.8679

2 7.3569 7.3858 7.3859 7.421 7.3865

3 8.3472 8.3708 8.3710 8.410 8.3757

4 11.0521 11.1005 11.1009 11.180 11.1094

5 14.1024 14.0806 14.0810 14.370 14.1151

6 14.7446 14.7964 14.7070 – 14.7423

0.2 1 2.7953 2.8058 – 2.815 2.7882

2 4.6246 4.6298 – 4.655 4.6108

3 5.0938 5.0963 – 5.125 5.0869

4 6.2998 6.3070 – 6.346 6.2708

5 7.4235 7.4052 – 7.493 7.3881

6 7.7388 7.7179 – 7.7050
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Table 12

Comparison of the frequency parameter ô ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh= �D

q
for simply supported skew plates (a/b ¼ 1, v ¼ 0.3, a ¼ 451)

h/b Mode ô

Present Liew et al. [41] Huang et al. [40] Raju and Hinton [43] Woo et al. [42]

0.001 1 3.5705 3.5800 3.5208 3.6648 3.5781

2 6.6945 6.7153 6.7153 6.7632 6.7168

3 10.1389 10.1756 10.1574 10.1979 10.1984

4 10.9869 10.9754 10.8454 11.2467 11.0746

5 14.2176 14.2662 14.2660 14.8334 14.3240

6 17.0714 17.0518 – – 17.1028

0.2 1 2.8037 2.9129 – 2.968 2.8799

2 4.8528 4.8736 – 4.909 4.7955

3 6.6434 6.6622 – 6.767 6.5052

4 6.9295 7.0148 – 7.129 6.9893

5 8.5063 8.4831 – 8.698 8.3615

6 9.5509 9.5878 – – 9.5051

Table 13

Comparison of the frequency parameter ô ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh= �D

q
for clamped skew plates (a/b ¼ 1, v ¼ 0.3, a ¼ 451)

h/b Mode ô

Present Liew et al. [41] Huang et al. [40] Raju and Hinton [43] Woo et al. [42]

0.001 1 6.6123 6.6519 6.6510 6.665 6.6575

2 10.7564 10.7898 10.7902 10.9 10.8259

3 14.9769 15.0276 15.0271 15.36 15.2298

4 15.9111 15.9342 15.9313 16.09 16.1277

5 19.8852 19.9395 19.9373 20.77 20.5724

6 23.3366 23.2526 23.2523 – 23.6702

0.2 1 4.1465 4.1590 – 4.178 4.1622

2 5.8959 5.9021 – 5.947 5.9043

3 7.5333 7.5422 – 7.628 7.4729

4 7.7909 7.7907 – 7.849 7.8007

5 9.2071 9.2159 – 9.374 9.2237

6 10.1154 10.0921 – – 10.1056
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Figs. 10 and 11 describe the variation of the fundamental natural frequencies with the skew angle for simply
supported and clamped plates. In addition to the observations made from Tables 14 and 15, it is discerned that
the frequencies slowly improve as the skew angle increases from 01 to 301, with pronounced frequency
increments occurring when the skew angle rises from 301 to 601. The frequency discrepancies among the plates
with different volume fraction exponents also increase as the skew angle grows.

The frequencies in the first four modes for simply supported and clamped functionally graded SUS304/
Si3N4 skew plates (a/h ¼ 10, a/b ¼ 1) are presented in Tables 16 and 17, and similar frequency characteristics
to those shown for Al/ZrO2 plates are discerned.

4.4. Effects of the shear correction coefficient

The influence of different values of the shear correction coefficient on the frequency of the FG plates is
investigated in this study. A variety of derivations for the shear correction coefficient has been proposed.
A constant value of K ¼ 5/6 is commonly used for the isotropic material. Timoshenko [44] presented a
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Table 14

Variation of the frequency parameter o� ¼ oa2=h
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
with the skew angle a for simply supported Al/ZrO2 skew plates (a/b ¼ 1,

a/h ¼ 10)

n Mode a

151 301 451 601

0 1 6.0071 7.0878 9.6709 16.597

2 13.395 14.547 17.964 26.978

3 15.3577 19.155 24.985 35.962

4 20.979 22.152 27.259 45.463

0.2 1 5.7016 6.7283 9.1832 15.771

2 12.724 13.820 17.071 25.661

3 14.591 18.206 24.037 34.233

4 19.943 21.061 25.928 43.308

0.5 1 5.4074 6.3816 8.7115 14.967

2 12.073 13.114 16.202 24.366

3 13.846 17.280 23.014 32.519

4 18.929 19.993 24.618 41.158

1.0 1 5.1543 6.0827 8.3025 14.261

2 11.505 12.496 15.437 23.209

3 13.193 16.463 21.907 30.968

4 18.034 19.046 23.449 39.188

3.0 1 4.9015 5.7817 7.8842 13.512

2 10.913 11.849 14.622 21.927

3 12.507 15.588 20.056 29.191

4 17.067 18.019 22.153 36.859

Table 15

Variation of the frequency parameter o� ¼ oa2=h
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
with the skew angle a for fully clamped Al/ZrO2 skew plates (a/b ¼ 1, a/h ¼ 10)

n Mode a

151 301 451 601

0 1 10.308 12.2116 16.635 27.502

2 18.539 20.349 25.275 37.352

3 20.750 25.452 33.377 46.061

4 26.398 28.226 35.182 54.961

0.2 1 9.7996 11.6138 15.835 26.246

2 17.645 19.375 24.086 35.656

3 19.754 24.245 31.826 43.991

4 25.144 26.893 33.554 52.506

0.5 1 9.3043 11.029 15.047 24.973

2 16.765 18.413 22.902 33.944

3 18.771 23.047 30.274 41.890

4 23.899 25.568 31.921 50.002

1.0 1 8.8675 10.511 14.338 23.789

2 15.973 17.542 21.816 32.325

3 17.883 21.954 28.833 39.887

4 22.765 24.354 30.399 47.587

3.0 1 8.3940 9.9388 13.523 22.315

2 15.069 16.5315 20.509 30.238

3 16.859 20.659 27.054 37.258

4 21.429 22.902 28.505 44.042
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shear correction coefficient that depends on the Poisson ratio n

KðvÞ ¼
5þ 5v

6þ 5v
. (45)

A shear correction factor for FG plates was defined by Efraim and Eisenberger [20] as

K ¼
5

6� ðv1V1 þ v2V2Þ
, (46)

where v1 and v2 represent the Poisson ratios for ceramic and metal, V1 and V2 denote the volume fractions for
ceramic and metal in the entire cross section. Table 18 shows the effects of three different shear correction
coefficients on the frequency of the Al/Al2O3 FG plates. The constant shear correction coefficient is termed as
Sc-01, the factor given by Efraim and Eisenberger [20] is termed as Sc-02, and the shear coefficient proposed
by Timoshenko [44] is termed as Sc-03. For the plate with a/h ¼ 5, the results obtained from using shear
correction coefficients Sc-02 and Sc-03 are more close to the solution produced from a higher-order
deformation theory [21] than that derived from using a constant shear correction factor is. For the plate with
a/h ¼ 10, the difference among the results obtained from adopting three different types of shear factor is
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Table 16

Variation of the frequency parameter o� ¼ oa2=h
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
with the skew angle a for simply supported SUS304/Si3N4 skew plates (a/b ¼ 1,

a/h ¼ 10)

n Mode a

151 301 451 601

0 1 5.9106 6.9723 9.5148 16.3609

2 13.2202 14.3631 17.7541 26.7304

3 15.1581 18.9198 25.5815 35.7040

4 20.7447 21.9145 26.9757 45.4983

0.2 1 4.8097 5.6741 7.7430 13.3082

2 10.7497 11.6779 14.4318 21.7179

3 12.3255 15.3821 20.8077 28.9991

4 16.8611 17.8103 21.9230 36.7314

0.5 1 4.1002 4.8376 6.6021 11.3456

2 9.1608 9.9514 12.2969 18.5011

3 10.5043 13.1092 17.6516 24.6997

4 14.3669 15.1749 18.6809 31.2779

1.0 1 3.6049 4.2534 5.8049 9.9728

2 8.0505 8.7447 10.8042 16.2479

3 9.2312 11.5192 15.3314 21.6829

4 12.6218 13.3307 16.4099 27.4443

3.0 1 3.0949 3.6512 4.9809 8.5468

2 6.9011 7.4945 9.2536 13.8932

3 7.9111 11.4097 12.7240 18.5130

4 10.8054 13.1548 14.0359 23.3006

Table 17

Variation of the frequency parameter o� ¼ oa2=h
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
with the skew angle a for clamped SUS304/Si3N4 skew plates (a/b ¼ 1,

a/h ¼ 10)

n Mode a

151 301 451 601

0 1 10.1990 12.0959 16.5188 27.4788

2 18.4045 20.2224 25.1807 37.4046

3 20.6117 25.3277 33.3172 46.1961

4 26.2651 28.1104 35.1335 55.199

0.2 1 8.2966 9.8388 13.4341 22.3412

2 14.9637 16.4407 20.4684 30.3959

3 16.7564 20.5866 27.0724 37.5292

4 21.3455 22.8444 28.5481 44.8299

0.5 1 7.0674 8.3802 11.4394 19.0122

2 12.7428 13.9989 17.4234 25.8586

3 14.2686 17.5268 23.0405 31.9221

4 18.1733 19.4473 24.2956 38.1218

1.0 1 6.2043 7.3546 10.0328 16.6493

2 11.1789 12.2774 15.2706 22.6314

3 12.5160 15.3673 20.1861 27.9302

4 15.9364 17.0489 21.2831 33.3348

3.0 1 5.3044 6.2823 8.5527 14.1290

2 9.5354 10.4634 12.9885 19.1696

3 10.6715 13.0844 17.1479 23.6351

4 13.5739 14.5099 18.0716 27.9680
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Table 18

Effects of different shear correction coefficients on the natural frequency parameter ō ¼ oh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for simply supported square Al/Al2O3

FG plates

a/h Sc n

0 0.5 1 4 10

5

Present Sc-01 0.2055 0.1757 0.1587 0.1356 0.1284

Sc-02 0.2098 0.1790 0.1616 0.1383 0.1313

Sc-03 0.2096 0.1788 0.1614 0.1382 0.1312

Matsunaga [21] 0.2121 0.1819 0.1640 0.1383 0.1306

10

Present Sc-01 0.05673 0.04818 0.04346 0.03757 0.03591

Sc-02 0.05713 0.04849 0.04371 0.03781 0.03619

Sc-03 0.05711 0.04847 0.04370 0.03779 0.03618

Matsunaga [21] 0.05777 0.04917 0.04426 0.03811 0.03642

20

Present Sc-01 0.01464 0.01241 0.01118 0.009702 0.009311

Sc-02 0.01465 0.01241 0.01118 0.009706 0.009315

Sc-03 0.01464 0.01241 0.01118 0.009705 0.009314
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negligible. As the plate becomes thinner (a/h ¼ 20), there is no discernible differences. It is concluded,
therefore, for a relatively thick plate, the modified shear correction coefficients yield more accurate results than
the constant factor does; for the plate with a/hX10, the different shear correction factors have no pronounced
effect on the solutions.

5. Conclusion

The free vibration analysis of FGPs is carried out using the element-free kp-Ritz method. A kernel particle
estimate is employed to approximate the two-dimensional displacement field, and the first-order shear
deformation plate theory is used to account for the transverse shear effect and rotary inertia. The elastic
properties of FGPs are assumed to vary through the thickness according to a power law. The results derived
with this method are compared with the solutions available in the literature to validate their accuracy. It is
found that a volume fraction exponent that ranges between 0 and 5 has a significant influence on the
frequency, but that the effects of the length-to-thickness ratio on the frequency of a plate are independent of
the volume fraction. For a skew plate, a speeding frequency increment trend is observed at skew angles greater
than 301. It is found that the different values of shear correction coefficients have no pronounced effect on the
frequency of FG plates with a/hX10.
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